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Propagation of lower surface waves is studied in gradient fibers with longitudinal 
additive inhomogeneity. 

In recent years various optoelectronic applications have been developed for fiber and 
film lightguides having a gradient (inhomogeneous) change in their index of refraction, 
which may be periodic. Among these are use in resonant structures with distributed inverse 
feedback, input and output of collimated laser beams, etc. [1-7]. Theoretical analysis of 
gradient lightguides presents great mathematical difficulties because many singular features 
of the general theory of linear equations with variable coefficients ahve been studied only 
for special classes of equations such as Weber, Bessel, Mathieu, Meinser, Lamet, Gauss equa- 
tions, etc. However, practical application of various gradient media demands study of new 
equations with periodic coefficients. 

At the present time wave propagation has been studied in media with a gradient distri- 
bution of material characteristics in a single direction [2, 4, 6, 8-11]. It is of impor- 
tance to accurately consider the waveguide properties of isotropic media and waveguides based 
on such media, the dielectric permittivity of which can simultaneously change in different 
directions with respect to the wave propagation direction. 

We will consider passage of waves through dielectric fibers of circular cross section 
with inhomogeneous periodic properties along the longitudinal coordinate z and a gradient 
profile over the cross section with azimuthal symmetry (Fig. i). We will apply Maxwell's 
equations for monochromatic fields directly, producing two independent systems for E and H 
waves. In a cylindrical coordinate system these equations have the following form: 

OE~ _--. ]~~ 1 0 (rE~) = -- ico%H~,, (i) 
8z r Or 

OH~ OH~ 

Oz Or 
- jco~ (r, z) E~, 

0H~ _ jco~ (r, z) E~, 1 0 (rH~) = io~s (r, z) E~, 
Oz r Or ( 2 )  

OE~ OE~ = _ /CouoH~ ' 

Oz Or 

where ~o, e(r, z) are the magnetic permittivity of a vacuum and the dielectric permittivity 
of the gradient core material. 

We will consider the propagation of surface H waves. From system (i) we obtain, for 
the transverse component of the electric field 

OZE~ 1 0 E ~  OZE~ I I ] 
Or 2 + r Or + 0--7- + e2Uo8, (r, z ) . - - ~  E~=0.  (3) 

We will consider the two-dimensional spatial profile of the core dielectric permittivity in 
the form 

s (r, z) = ~ (0) (1 - -  ar 2 -~ br~ - - 2 q  cos ~z), (4) 
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Schematic diagram of gradient periodic fiber lightguide. 

where e(0) is the dielectric permittivity value at the geometric axis of the core and q is 
the modulation coefficient, 0 s q < i. 

If the solutions of Eq. (3) are constructed, the other components are then found by 
simple differentiation of Eq. (I). We will seek a solution of Eq. (3) in the form R(r)Z(z): 

d2R + 1 dR [ - R O, 
dr ~-~" r dr q- L o~2bo e (r) --- ?~ - -  1 (5) 

r 2 j 

d2Z 
_ _  Jr (72 __ 2qk2 cos ~z) Z = 0. (6) 
dz z 

On the basis of the results of [12-14], we write the general solution of Eq. (5) in the 
following manner : 

R(r) = A 1 R I ( a ,  b, •  .4_oR.~(a, b, • (7) 

where R1(a, b, • R2(a, b, zr) are special wave optics functions. 

By introducing new variables in the form 8z = 2y Eq. (6) reduces to a Mathieu equation 

d%~__ -t- (o'. -- 2ql cos 2 j  Z = O, (8) 
d9 ~ 

= 2 ~ I T  b. Using the results of [15, 16], we write the solution of where e ---- 472/~ 2, ql = 41~2q/~ 2, 
Eq. (8) : 

Z (y, z) = BI01(• y) e-iny @ B2G2(• y) tiny, (9) 

where  q i s  t h e  c h a r a c t e r i s t i c  i n d e x  o r  wave number  o f  d i r e c t e d  s u r f a c e  waves  a l o n g  t h e  c o -  
o r d i n a t e  y ;  O1(• F) and  Q ( x ,  b') a r e  M a t h i e u  f u n c t i o n s .  

On t h e  b a s i s  o f  Eqs .  (7) and (9) we f i n d  e x p r e s s i o n s  f o r  t h e  a z i m u t h a l  e l e c t r i c  f i e l d  
components on the form 

E~ = D~R~ (a, b, • e~(• g) e-in,< (10) 

Here we consider the finite field value on the axis of the gradient periodic lightguide. 
The other magnetic field components are found from Eq. (I): 

D] 
H e  - -  io),uo 

R1 (a, b, • [01 .,j(• U) e-i,l,J--jq@l(X, ~) e-inq, 

H,j = - -  ](~ [RI ,r(a, b, •  • R,(a, b, xr)] @,(• d) e-Jny. 

(11) 

In an external homogeneous infinite cylindrica I layer Maxwell's equations transform to a 
Bessel equation and a special form of the Mathieu equation with ql = 0 (harmonic oscillation 
equation), the solution of which is well known: 

E~ = C1K1 (or) e-/w. (12)  

The remaining electromagnetic field components are easily found from Eq. (i). 

The relationship between the wave numbers in the outer and inner layers has the following 
form: • kz ?2, hz=_0)zp0~(0) ' __02= k2(l--~)_• Here ~=%/e@), while e2 is the relative dielec- 
tric permittivity of the infinite shell. 

ii0 



The propagation constant ~ of the directed waves is related to the eigennumber y of 
Eq. (8) through expressions obtained by substituting Eq~ (9) in the Mathieu equation [2]. 
After normalizing wave numbers, we obtain 

These last expressions can easily be related to the coefficients of Eqo (8). 

To study the dispersion properties of the gradient periodic waveguide we make use of 
the conditions of continuity of the longitudinal and azimuthal components of the electric 
and magnetic fields at the boundary between the internal and external media. Substituting 
in these conditions Eqs. (10)-(12), we obtain a transcendental equation for definition of 
the transverse and longitudinal wave numbers 

• b, • , oK,,(G) _ 0. (13)  

To determine the wave numbers of surface waves directed by the gradient periodic fiber 
lightguide, we substitute the first expression of Eq. (9) in Eq. (8). Then, considering an 
expansion of the form 

(14) 

we obtain 

~,-~ c,~ ( x ) !B~ - -2cos2d l  e ,'~'~U= 0 
. ~  - ~ ' " (15) 

Writing the periodic term in the last expression in exponential form~ we obtain a recursion 
relationship [2, 16, 17-19] for determination of n n with known values of the longitudinal 
wav= numbers, mean period value, dielectric permittivity spatial profile amplitude, and wave 
numbers in a free space with material characteristics g(0), uo: 

B,,c,, (• + c,~+~ (• + e,,_~ (z) = 0 

or, in other words, a stability diagram (Fig. 2). 

In the stability regions the wave number is real, and on the boundaries of these regions 
it takes on the values ~----/, /----0, 1,2 ..... l~D~l@l ' rniN=0, ~e~0. 

The solution of Eq. (8) is limited here, In regions of instability -----N=N'-~/N'~=f~-/d, 
where ~ is a positive number. The solution of Eq. (8) increases without limit at infinity. 
In [15] it was shown that in this case the expression @(• E)exp (/~]ny) is either an entirely 
real of an entirely imaginary function, i.e., depending on location in the first or second 
type of region in the stability diagram, wave propagation occurs or the waveguide system 
loses these properties. The gradient parameters of the transverse spatial profile of the 
dielectric permittivity qualitatively and quantitatively determine the transition from one 
region of the stability diagram to the other. It can easily be noted from the stability 
diagram that the geometric locus of the longitudinal wave numbers will be almost a straight 
line, the form and position of which depend on the dispersion curve of the transverse wave 
number (Fig. 2). For values of dimensionless diameter outside the limits of the surface 
wave critical region, the dispersion characteristic forms an angle with the axis equal to 

~F=arctan q o (16) 
( I -- ~2k-2) 

When one or the other surface wave is considered, the dispersion characteristic slides 
along the stability diagram, remaining practically parallel to its former position~ permit- 
ting us to find concrete values for the longitudinal wave numbers of symmetric surface waves. 
The initial point corresponding to the critical dimensionless diameter lies upon a straight 
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Fig. 2. Stability diagram for surface Ho, wave of gradient periodic fiber at 
e = 0.9804: a) a = 10 -2 , b = 2.5.10-3; i) q = 0.45, 2) 0.75; b) a = 2.10 -=, 
b = 4,10-~, q = 0.45. 
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F i g .  3 .  B r i l l o u i n  d i a g r a m  o f  s u r f a c e  Ho,  wave  o f  g r a d i e n t  p e r i o d i c  f i b e r  a t  
e : 0 . 9 8 0 4 :  a )  a = 10 - 1 ,  b = 2 . 5 , 1 0  - 3 ,  q = 0 . 4 5 ;  b )  a = 2 , 1 0  - l ,  b = 4 , 1 0  - 4  , 
q = 0 . 4 5 ;  c )  a : 10 - 2  , b : 2 . 5 , 1 0  - 3  , q : 0 . 7 5 .  

line (q = const, [ = const), which forms an angle ~, equal to ~=arctanq8 -I, with the axis of 
the conventional longitudinal wave number. 

As the gradient parameters of the transverse dielectric permittivity distribution 
change, the dispersion curve shifts along the straight line of the critical regime of a 
homogeneous dielectric medium with material characteristics ~oe(0). Then, as is evident 
from Fig. 2, the critical point of the waveguide regime moves from the instability zone to 
the stability zone of the longitudinal Mathieu diagram. Because of this, the waveguide re- 
gime within the limits of the first stability zone is completely determined by the critical 
region of the transverse wave number dispersion characteristic, although previously it was 
determined by the entire zone. If the amplitude of the longitudinal perturbation of the 
dielectric permittivity changes, the slope of the ligh~guide critical regime straight line 
changes. The effects of change in gradient parameters and dielectric permittivity modula- 
tion amplitude can be seen especially clearly in a Brillouin diagram (Fig. 3). With in- 
crease in gradient parameters the width of the passband increases, while that of the stop- 
band decreases (Figs. 3a, b). When the modulation amplitude increases (Fig. 3c), the width 
of the stopband increases, and that of the passband decreases due to the directive properties 
of the gradient periodic fiber lightguide in the surface wave propagation regime. In the 
given case this is true not only of Bragg diffraction up to the third order inclusive, Thus, 
one can pose the problem of optimal synthesis in a manner similar to conventional periodic 
systems -- definitions, following from a specified quality criterion for transverse and lon- 
gitudinal gradient properties for the required pass and stopbands (regulated distributed 
inverse feedback). As follows from the results obtained, in open gradient periodic light- 
guides one can effectively control the propagation regime of surface and quasisurface waves 
by variation of the transverse spatial profile of the dielectric permittivity. 
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NOTATION 
E~, Er, H~, Hr, transverse components of electric and magnetic fields; Ez, H , longi- z 

tudinal electric and magnetic field components; ~o, s, magnetic and dielectric permittivi- 
ties; ~, circular frequency; a, b, spatial gradient parameters; B, spatial frequency; q, 
dielectric permittivity modulation amplitude; ~, o, internal and external transverse wave 
numbers; y, longitudinal wave number; RI, R2, special functions; n, surface wave propagation 
constant; K~ first order McDonald function; @~, @2, Mathieu functions; d, dimensionless 
diameter. 
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